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Summary. The adiabatic corrections of the i °II, state of H, are calculated for a
wide range of internuclear distances using an explicitly correlated wavefunction.
The vibrational structure of this state is calculated in the adiabatic approxima-
tion. It is shown that for N =1 levels of the “—" substate, for which the
nonadiabatic corrections are negligible, the agreement between theory and
experiment is excellent; the small mass independent discrepancy of the order of
0.5-3cm™! is due to the convergence error in the Born—Oppenheimer calcula-
tions. For higher N the discrepancy is much larger. However, it is mass and
N-dependent and it is almost entirely due to the nonadiabatic effects caused by
*I1,—A, interactions. The still larger discrepancy for the “+ substate of the i
state is evidently caused by additional interactions of the i state with close-lying
states of *X [ symmetry.
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1. Introduction

The i *1I1, state of H, belongs to the 3s, d 2114 complex of states which has been
studied extensively in the recent years by experimental methods [1-12]. The
states resulting from 3s, d configurations which form this complex of states, i.e.
h(35) *2 7, g(3d) *X ), i(3d) *II, and j(3d) *4, need special treatment since the
electronic energy separations between the individual states are smaller than the
rovibrational energy separations. Consequently, the rotation of the molecule
induces a breakdown of the Born—Oppenheimer approximation. The only
exceptions are the N =1 levels of the i3II, state for which the adiabatic
approximation is adequate. Theoretically the i §Hg state of H, was studied in the
Born—Oppenheimer approximation several years ago [13]. In that study a very
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flexible wavefunction depending explicitly on the interelectronic distance was
used and an accurate potential energy curve was calculated. In this paper the
previous study is extended to include adiabatic corrections.

2. Adiabatic calculations

The adiabatic corrections are given as expectation values of the operators:

H =H{+ H,+ H;, (1)
where
Hi=—(1/20)A4x, (2)
Hj = —(1/8u)(4, + 45), (3)
Hy = —(1/4)V, V. (4)

H is the operator of the relative kinetic energy of the nuclei, Hj is the correction
operator to the kinetic energy of the electrons, Hj is the mass polarization
operator and u denotes the reduced mass of the nuclei. The explicit expression of
<A|H 1[4> in terms of elliptic coordinates is given in [14]. However, that general
formula for A =0 is quite inconvenient for numerical computations. Therefore
we adopt here the simplified method developed by Wolniewicz [15, 16]. The
electronic wavefunction for the I state is assumed in the form:

P(1,2) =} a[®:(1, 200 + 1) — P2, Dix; + i), (5)

H

where x; and y, denote cartesian coordinates of ith electron and the basis functions
@,(1,2) which possess X symmetry are expressed in elliptic coordinates as:

?,(1,2) =exp(—aé, — GE)ETNVE T exp(Bn, + Brp) + (— D)k Th !
x exp( — By — Fn))(2riafRY™, (6)
where «, §, @, ff are nonlinear variational parameters, n;, k;, /;, m; and y, are
integers greater or equal to zero; r;, and R describe the interelectronic and

internuclear distances, respectively. According to Wolniewicz [15], in order to
evaluate (H{) it is convenient to express basis functions in the form:

®,(1, 2)(x, + iyy) = 2'29,(1, 2)4; exp(i), (7

where y is the Euler angle describing rotation around the molecular axis. Under
this assumption the diagonal part of A, has the form (we omit here the rotation
term):

Qldg|ty =Y, [jA?Akd);" [€0|4£[0> + A/(2uR*)] D, dr
ik

+2112/R? jAf¢?zk<1|L+|0>¢k a’r], (8)

where integration is performed over all electronic coordinates. L™ = L, + iL,,
where L, and L, are the components of electronic angular momentum in the
molecule fixed-frame and (1|L*|0) is an operator given explicitly in elliptic
coordinates in [14]. The term (0|4, |0)> denotes the appropriate operator for 2
states {17].
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Table 1. Adiabatic corrections <(H') of the i3I, state in cm™’.
AD = H'(0) — H'(R) is the adiabatic correction to the dissociation

energy

R CHY {H3» CH3>  <HD 4D
1.0 499.953 61.514 0.018 561.485 —486.779
1.2 353.665 54.895 0.022 408.582 —333.876
1.4 265.366 49.684 0.026 315.076 —240.370
1.6 208.054 45.541 0.032 252.627 —178.921
1.8 168.822 42.223 0.039 211.084 —136.378
1.9 153.727 40.816 0.044 194.587 —119.881
2.0 140.877 39.554 0.047 180.478 —105.772
23 112.151 36.503 0.070 148.724 —74.018
2.5 98.795 34.979 0.091 133.865 —59.159
3.0 78.418 32.589 0.198 111.204 —36.498
3.5 74.990 32.088 0.516 107.594 —32.888
3.7 80.781 32.529 0.789 114.776 -40.070
4.0 95.337 34.245 1.468 130.848 —56.142
4.5 76.316 37.448 2.962 116.726 —42.020
5.0 44.440 38.801 3.811 87.052 —12.346
6.0 33.524 38.449 4.306 76.279 —1.573
7.0 32.756 37.869 4.469 75.094 —0.388
8.0 32.724 37.576 4.555 74.855 —0.149

10.0 32.746 37.409 4.627 74.783 —0.077

12.0 32.733 37.382 4.648 74.763 —0.057

The adiabatic calculations were performed using the previously constructed
electronic wavefunction consisting of 70-terms in the expansion [13]. The adia-
batic corrections were calculated for a wide range of internuclear distance:
1.0 < R < 12.0 bohr. The results are presented in Table 1 where all values but R
are given in units of cm~'. AD denotes the adiabatic correction to the dissociation
energy. The overall characteristic of the adiabatic corrections for the i state is
similar to that found for the 7 'II, state [18]. It is characterized by a large value
for small R which is a consequence of the fact that for small R the dominant
contribution originates from the term [L(L + 1) —247]/2uR* (L =2 and 4 =1
for the i state) which becomes very large for R — 0. (H7) possesses a maximum
near R = 4.0 bohr. Therefore the adiabatic correction increases the hump on the
Born—Oppenheimer potential energy curve appearing in this region [13].

3. Vibrational structure

The adiabatic wavefunctions y,y(R) and eigenvalues FE,, were obtained by
numerical solution of the one-dimensional Schrédinger equation for nuclear
motion:

1 & NN +1
[_ﬂ yTha UBO(R) + CH'(R)) + —(2;1—;52——) - EUN] Xon(R) =0, 9

with the BO potential energy curve taken from [13] and the adiabatic corrections
{H’(R)> computed in this work. The numerical integration was carried out in
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Table 2. Dissociation energies for the i *II, state of H,, HD, and D,
in the adiabatic approximation

v N=0 N=1 N=2 N=3 N=4
H,
0 6366.644  6309.671  6196.188  6027.111  5803.783
1 4250420  4196.766  4089.903  3930.717  3720.504
2 2279.867 2229566 2129400  1980.232  1783.329
3 462.147 415.390 322314 183.783 1.076
HD
0 6539.528  6496.543  6410.837  6282.928  6113.585
1 4688.237  4647.411  4566.015  4444.553 = 4283.767
2 2945736  2907.078  2830.010  2715.024  2562.846
31315242 1278817 1206213  1097.916 954.646
D,
0 6740932  6712.080  6654.492  6568.404  6454.161
I 5211506  5183.832  5128.599  5046.034  4936.476
2 3754408 3727911  3675.029 3595984  3491.108
3 2370.699 2345394  2294.893 2219416  2119.288
4 1062958  1038.887 990.855 919.080 823.886

Table 3. Rotational constants B, (in
em™?) for the i *II, state of H,, HD,

and D,

v H, HD D,

0 28525 21514 14436
1 26865 20434  13.846
2 25187 19350 13.258
3 23415 18233 12.662
4 12.045

the interval R =0 to 12 bohr and the integration step was 0.01 bohr. For the
nuclear masses we used M, = 1836.1515 and M, = 3670.4907 in units of m,.
The final results of the computations of adiabatic rovibrational energies, D,
are presented for the i state of H,, HD, and D, in Table 2. In Table 3 the
rotational constants B, calculated in the adiabatic approximation are included.
In Table 4 the calculated term values 7, are compared with the experimental
data. The adiabatic 7, values were obtained by subtracting the computed
vibrational energies D, from the theoretical adiabatic dissociation limits. The
latter values were taken from [16] and they are 118377.200, 118676.087, and
119029.841 cm~! for H,, HD, and D,, respectively. The experimental term
values listed in Table 4 are those for the “—> substate of the i state and were
taken from [11] and [19] for H, and D,, respectively. For HD the experimental
term values were obtained by adding the experimental energy for the i state,
measured in respect to the v =0, N =1 level of the ¢ 3II; state [9], to the
theoretical adiabatic energy of this level of the ¢ state [20]. It should be noted,
however, that uncertainty in the latter value is of the order of 0.5 cm™!
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Table 4. Comparison of the theoretical adiabatic term values T, (cm™!) with experimental data for
the i *II; state of H,, HD, and D,. 4 stands for Ty, T.

exp

N v Tadiab Texp A N v T adiab Texp A

H, HD
10  112067.53  112066.96 0.53 32 115961.07 11593442  26.65
11 11418043  114177.96 247 33 11757817 117559.61 18.56
T

: : : 4 1 11439232 11433207 6025
20 11219101 11214119  39.82 4 2 11611324 11606883 4441
21 11428730 11425930  28.00 4 3 11772144 11769094  30.50
2 2 11624780  116227.03  20.77
2 3 11805489 11804298  11.91 D,

1 0 11231776 11231713 0.63

3 0 112350.09 112265.55 84.54 1 1 113846.01 113845.27 0.74
3 1 114446.48 114384.78 61.70 1 2 115301.93 115301.01 0.92
3 2 116396.97 116352.36 44.61 1 3 116684.45 116683.29 1.16
3 3 118193.42 118167.46 25.96 1 4 117990.95 117975.17 15.78
4 1 11465670  114557.12  99.58 3 1 11390124 11389363 761
4 2 11659387 11652234  71.53 5 2 113548l 11534878 603
4 3 11837612  118339.67 3845 > 3 11673495 11673918 47

HD 2 4 11803899  118038.20 0.79
10 1217955 112179.39 0.16 30 11246144 11243925 2219
11 11402868  114028.24 0.44 31 113983.81 11396640  17.41
12 115769.01  115768.09 092 32 115433.86 11542039 1347
13 11739727 11729575 152 33 11681042  116800.31 10.11
20 11226525 11224381  21.44 3 4 11811076  118103.67 7.09
2 L 1I4110.08 11409427 1581 4 0 11257568 11253845  37.23
2 2 11584608 11583428  11.80
S 3 lissoss  lisio 6 4 1 11409336 11406394  29.42

4 2 11553873 11551605  22.68

300 11239316 11234459  48.57 4 3 11691055 11689390  16.65
301 11423154 11419510 3544 4 4 11820595 11819484 1111

In the adiabatic approximation the i °II, state is doubly degenerate. It is
composed of two substrates, i *II ;- and i *II . If nonadiabatic effects are added,
the above mentioned degeneracy is removed. The nonadiabatic effects for
the i state, up to the second order in perturbation theory, are caused by the
interaction between the i state and the close lying 2 X, g *°X }, and j 34, states
and are examples of so-called heterogeneous nonadiabatic effects. The homoge-
neous nonadiabatic effects caused by the interaction of the i state with higher
states of this same symmetry are much smaller because of the relatively large
energy gap between the i state and higher *II, states. For the “—* substate of the
i state the heterogeneous nonadiabatic effects are caused entirely by the perturba-
tion by the j °A, state. Therefore for N =1 levels of the i *IT . state, for which
there is no corresponding levels of the j°4, state, the nonadiabatic corrections
should be negligible. As is seen from Table 4 the difference between theory and
experiment for the N =1 levels is very small. For v =0 this is 0.53, 0.16, and
0.63cm ' for H,, HD, and D,, respectively. Since this discrepancy is almost
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mass-independent, except for HD for which there is uncertainty of the order of
0.5cm™!, it is clearly due to the convergence error in the Born—Oppenheimer
potential energy curve. In vicinity of the equilibrium this error is of the order of
0.5 cm~'. The slightly larger discrepancy for higher vibrational levels (but still
for N = 1) means that the above mentioned convergence error is slightly larger
for larger values of R.

For the levels with N > 1 the discrepancy is much larger and it is strongly
N-dependent. Since these levels are perturbed by the j state the discrepancy
might be attributed to the heterogeneous nonadiabatic effects. These effects for
the A—1IT interaction depend on N like (N + 2)(N — 1) [21], so the nonadiabatic
effects for N =2, 3, 4 levels should be of ratios 4:10:18 =2:5:9. The corre-
sponding ratios can be found from Table 4 and they amount to 2:4.3:6.6,
2:44:7.1,and 2:4.3:7 for v =0, 1, 2 levels of H,, respectively. The correspond-
ing ratios for D, are 2:4.6:7.7, 2:4.6:7.7, and 2:4.5:7.5 for v=0,1,2,
respectively. It is seen that despite a small error in the BO calculation the
discrepancy between theoretical and experimental term values for the i *IT state
can be attributed almost entirely to nonadiabatic effects and these effects can be
estimated from Table 4.

In Table 5 we compare the theoretical and experimental term values for the
i 11} state of H,. As is seen from this table the discrepancies are much larger
and have opposite sign. For the “+” substate of the / state, in addition to
perturbation by the j 4 state, the perturbation by the close lying 4 *2 ;" and
g3z . states appears. It is evident that the latter interaction leads to much larger
nonadiabatic corrections and these corrections have opposite sign to the correc-
tions caused by IT—A interactions. Treating both corrections as additive it is
possible to estimate the nonadiabatic effects caused by the *II, -, interaction.’

Table 5. Comparison of the theoretical adiabatic
term values (cm~!) with experimental data for the
i1} state of H,. A stands for Tgap—Texp

N v Tgiab Texp 4

1 0 112067.53 112153.71 —86.18
1 1 114180.43 114269.15 —88.72
1 2 116147.63 116182.28 —34.65
1 3 117961.81 117983.74 —21.93
2 0 112191.01 112311.08 —120.07
2 1 114287.30 114419.48 —132.18
2 2 116247.80 116319.29 —71.40
2 3 118054.89 118106.95 —52.06
3 0 112350.09 112503.79 —153.70
3 1 114446.48 114614.27 —167.74
3 2 116396.97 116504.17 —107.20
3 3 118193.42 118278.96 —85.54

1 As one of the referees pointed out, the unperturbed term values for the i state calculated from
L-uncoupled parameters for 3s, 3d complex of states listed in Table VII of [11] for H, and in Table
VII of [9] for HD are far from the observed term values, but in agreement with the calculated ones
given in this paper



Adiabatic corrections for the i 3I1, state of the hydrogen molecule 255
4, Conclusion

We have presented in this paper adiabatic corrections for the i *II, state which
improve agreement between theory and experiment for this state. The conver-
gence error in the BO calculations has been estimated as 0.5 cm™! in the vicinity
of the equilibrium internuclear distance. The remaining discrepancy is clearly due
to the nonadiabatic effects originating from IT—A and X —IT interactions. Com-
parison between theoretical and experimental term values allows one to estimate
these corrections.
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